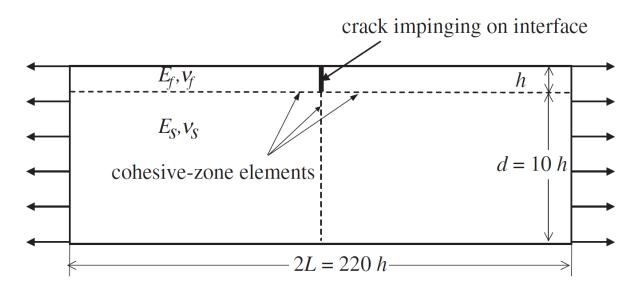


Bent F. Sørensen and Rubén I. Erives Department of Wind and Energy Systems Technical University of Denmark

Fracture mechanics testing beyond LEFM: Fracture mechanic testing to determine cohesive laws

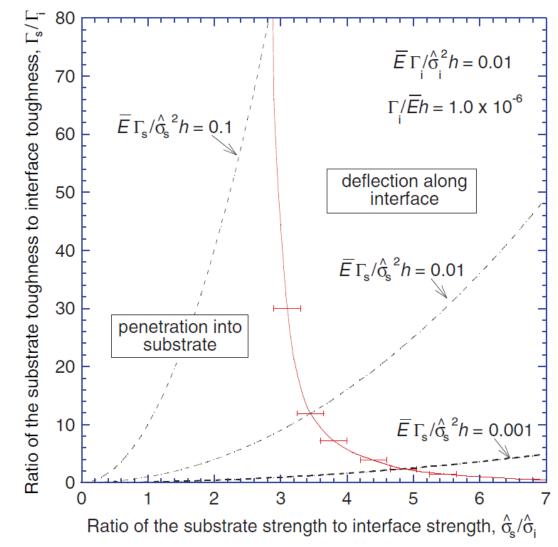
Motivation - why measure cohesive laws?


Rising fracture resistance (R-curve behaviour):

- Some composites show rising fracture resistance under delamination
- Rising fracture resistance is "beneficial" ⇒ can stabilize or arrest cracks

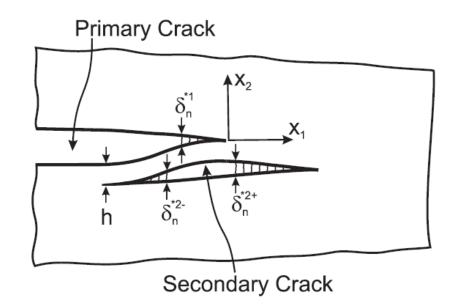
Can be modelled by cohesive zone modelling:

- Cohesive zone modelling (CZM) is widely implemented in finite element codes
- Using "real" (measured) cohesive laws will enable more accurate strength predictions

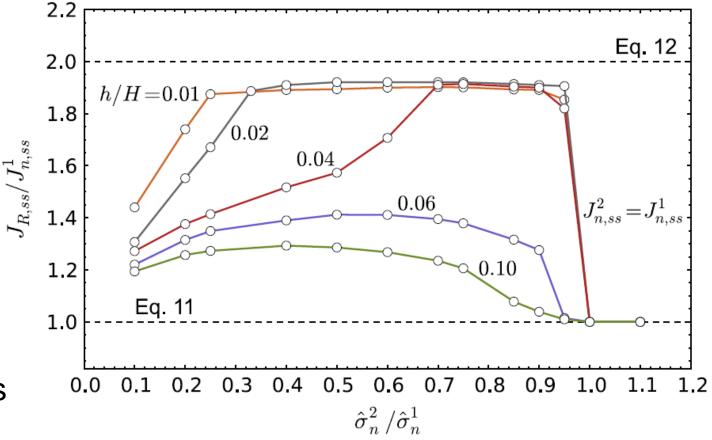

Motivation - does accuracy of cohesive law matter?

Crack deflection:

DTU

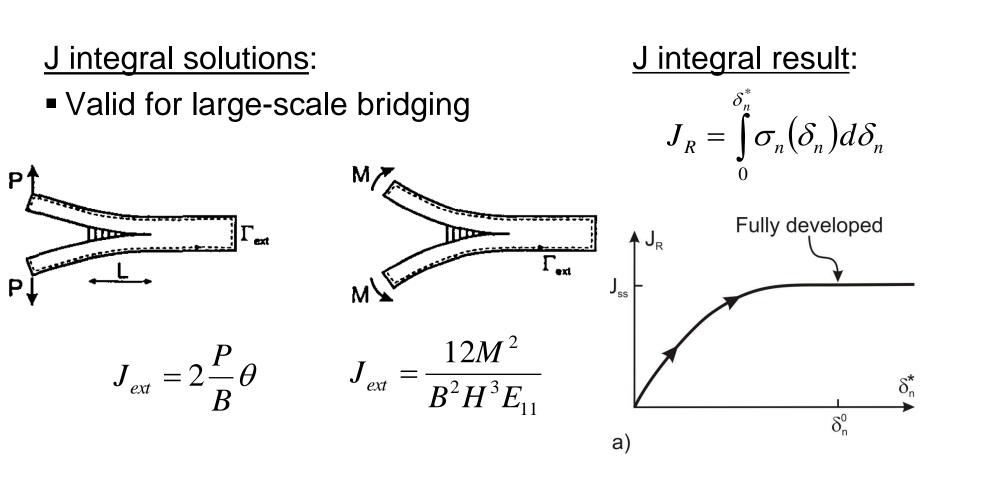

 Crack deflection/penetration at interface depends on both toughness and peak traction values

Parmigiani and Thouless, 2006, Journal of the Mechanics and Physics of Solids, 55 266-87


3

Motivation - does accuracy of cohesive law matter?

Secondary crack formation:


 The formation of a secondary crack at a neighbouring interface depends on the peak traction values

Goutianos and Sørensen, 2016, Engineering Fracture Mechanics 151 92–108

DTU

Measurement of cohesive laws (J integral approach)

Jabobsen and Sørensen, 2000, Plastics, Rubber and Composites, 26 119-33

Measurement of cohesive laws - an example

Large scale bridging region:

1000 Fracture resistance, $J_R[J/m^2]$ Steady-state: [MPa] $(\delta_{ss}^{*}, J_{ss})$ 800 Unloading σ_n 2 600 $\Delta J_{ss} = J_{ss} - J_0$ Normal traction, Onset: 400 (δ_0^*, J_0) 200 $J_R = J_0 + \Delta J_{ss} (\frac{\delta^* - \delta_0}{\delta_{ss}})^{\zeta}$ 0 0 2 3 0 0.2 0.4 0.6 0 Magnitude of end-opening, δ^* [mm] Magnitude of openings δ [mm]

Derived cohesive law:

Erives, Sørensen and Goutianos, 2023, Composites Part A, 165 107346

6

Measurement of cohesive laws - an example

<u>Crack tip fracture resistance</u>: Fracture test conducted in SEM

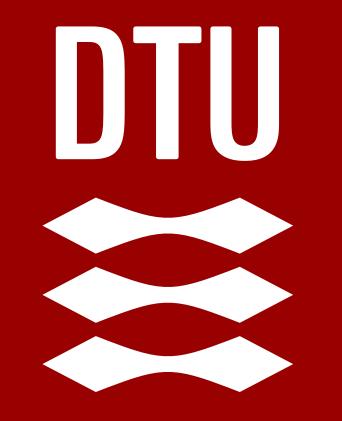
Fracture Resistance, $J_R \; [J/m^2]$ 400 80 [MPa]Microscale test Macroscale test 300 ь⁶⁰ Combined traction, 200 40 -∎-J_R Exp. J_R fit 100 20 2 6 8 10 0 4 2 8 4 6 End-openings, $\delta \ [\mu m]$ End-openings, $\delta \left[\mu m \right]$

Erives and Johansen, 2023, Proc. ICEM20, 20th Int. Conf. on Experimental Mechanics, Porto 2-7 July 2023

7

Title

Derived crack tip cohesive law:


Challenges and outlook

Difficulties:

 Measurement of crack tip cohesive laws requires care (high resolution displacements and narrow specimen to have straight crack front)

Reward:

- The fracture can be modelled accurately, also transition from stable to unstable crack growth before "fully developed" cohesive zone
- Materials can be developed or chosen to a given crack problem to provide best behaviour (e.g. highest load-carrying capability)

